Category Archives: Silicone Manufacturing

This category contains useful articles on Silicone manufacturing related questions or topics

When molding medical silicone parts in the same mold will changing the durometer change the dimensions of the molded part?

Question: When molding medical silicone parts in the same mold will changing the durometer change the dimensions of the molded part?

Answer: The final part dimensions will depend on inherent shrink rate and processing conditions. Different materials molded in the same mold with the same shrink rate should produce the same size parts.

Durometer changes require different materials or additives which often changes the shrink rates. Higher durometer materials often have a greater raw viscosity and may achieve greater cavity pressures that can sometimes produce slightly larger parts compared to lower durometer materials. The difference has been shown to be less than 1% for a 40 durometer change without resetting the optimal processing conditions. Generally, changing durometer in the same series for most suppliers will not significantly affect the final dimensions but a first article is recommended. If you are considering trying multiple materials then I would recommend letting your molder know as early as possible.

What are the typical tolerances for a silicone part?

Question: What are the typical tolerances for a silicone part?

Answer: Part tolerances will vary from one part to the next, and is typically dependent upon the intended function of the part.  While every part can be “perfect” as designed, in the real world this just isn’t the case, everything has a tolerance, it’s just a question of how tight that tolerance will be.  To save molders and designers some headaches and bickering, the RMA (Rubber Manufacturers Association) was kind enough to put together a series of standardized tables of tolerances for molded rubber parts.  The tables are categorized into different groups such as “Commercial”, “Precision”, and “High Precision” and are readily available for free on the internet.  They’ve also created tables that reference tolerances on other aspects of the part such as miter (alignment) and flash.  To learn more about RMA standard tolerances follow this link:

How Micromachining Patience Speeds Prototype Production

Article From: Modern Machine Shop, Derek Korn, Senior Editor

Albright Technologies has become adept at micromachining molds for silicone parts such as the one to the right. This has enabled the company to become effective in quickly generating prototypes for medical device manufacturers pressured to speed new products to market. Many of the silicone components it creates are either tiny themselves or have miniscule features measuring just a few thousands of an inch. What’s interesting is that the company has found it can produce prototypes faster by taking a slower, more conservative approach to micromachining molds using end mills that measure just a few thousands of an inch in diameter.

Plus, while one might assume that very high spindle speeds are needed to effectively mill molds using such small tools, the machine that performs micromachining at Albright—a 30-taper VMC—typically spins 0.005-inch-diameter tools at just 9,000 rpm. Although that means feed rates and cycle times are relatively slow, there are a number of reasons why a company focused on quickly turning prototyping work finds this acceptable. David Comeau, Albright’s president, and Robert Waitt, vice president, explained why during a recent visit to the New England-area molder.

Click here to read the rest of the article.

Why are medical silicone parts post cured?

Question: Why are medical silicone parts post cured?

Answer: Post curing or post baking is a simple heating process that takes place after silicone parts have been molded.  Although post baking parameters will vary from material to material, the post baking process typically involves heating parts to 300 – 400°F for 2 – 4 hours.  This process is performed for a variety of different reasons.

The first reason parts were post baked was due to the initial chemical composition of the earlier HCR (High Consistency Rubber) materials.  HCR materials typically cure as the result of a peroxide  based chemical mechanism (where as the more commonly used LSR (Liquid Silicone Rubber) materials cure as the result of a platinum based chemical reaction).  A peroxide based cured silicone will leave undesirable, low molecular weight byproducts that must be cooked out of the silicone matrix, typically these byproducts are various forms of benzoic acid.  For this reason, silicone vendors required that all HCR molded parts must be post baked prior to shipping.

The other reasons to post bake, which were likely discovered later, are the completion of silicone matrix cross-linking, and standardization of part size and physical and mechanical properties, namely compression set.

All silicone parts will shrink (slightly, typically 1-4% on overall size), while they may not all come out of the mold with the same degree of shrinkage, after a post baking process, all of the parts will reflect the same degree of shrinking.  Most molders factor in a value for shrink based on requested material data when designing the mold initially, this could mean that a shrink value is called out on the material of 2% but only approximately 1% of the shrink occurs in the molding process, were parts not post baked prior to shipping, the customer would receive parts that were roughly 1% too big.

The same is true of other physical and mechanical properties, compression set and percent elongation have been witnessed to fluctuate drastically if the parts are not post baked.  For this reason design engineers should always inquire with silicone molders as to whether or not they perform a post baking process, prior to embarking on large production  runs with parts that have critical physical property requirements.

How is compression testing done for liquid silicone?

Question: How is compression testing done for liquid silicone?

Answer: Compression set measures the permanent deformation of parts that have been subjected to high temperatures for some predetermined amount of time. One standard for compression set used in supplier literature is ASTM D395 A or B. Basically a standard puck is compressed between two plates and subjected to temperatures in the range of 250F at constant force or constant deflection. The sample is allowed to recover for 30 minutes and then measurements are taken. Alternative tests like ISO 815-B heat for 22 hours at 175 degrees C. The test method dictates the calculation but basically the compression set is a measurement of how well the puck returns to the initial thickness, so lower values indicate higher resistance to permanent deformation.

What methods do you recommend to help eliminate liquid silicone being stuck in the tool?

Question: I recently completed a silicone molding project and took it into production. The production has produced less than stellar yield. The main issue is the medical liquid silicone sticking to the tool. The tooling is fairly complex with some thin material undercuts. However, my question is: What methods for silicone molding do you recommend or material formulation to help eliminate material (silicone) being stuck in the tool?

Answer: Sticking can be reduced by changing liquid silicone molding materials, changing the tool surface, adding a release, or seasoning the tool. Changing medical silicone molding material with regard to the issue may improve release. For example, undercuts may be dealt with by finding a softer material with higher tear strength. Rougher surface finishes tend to promote less sticking compared to highly polished tools for liquid silicone molding. Alternatively some plating companies offer nonstick coatings that for some materials may be effective in improving release. Some molds will improve with increased number of cycles. The quick and easy option may be to use a release agent which many suppliers offer. Some releases may be specified for your liquid silicone material or for general use and Soap may be an alternative for those trying to control contamination risks. Releases usually only last some number of cycles before the effect diminishes and some may build up and require periodic cleaning.

Can medical grade silicone be bonded to thermal plastic parts?

Question: Can medical silicone be bonded to thermal plastic parts?


Answer: Medical silicone can be bonded to some thermal plastics such as polycarbonate, nylon, polybutylene terephthalate (PBT), and others. Bonding medical silicone can be improved with material selection, surface treatments, adhesives, and primers but many of these fail biocompatibility limiting their medical applications. Many thermal plastics don’t have enough thermal resistance to withstand over-molding temperatures while others bond poorly with liquid silicone such as polyethylene and polypropylene. Surface treatments like heating or flame, scratching, corona, plasma, and others can assist bonding. Adhesives and primers can be effective but they can add significant cost and cause problems with biocompatibility. There are some vendors that make implantable self adhesive silicones, adhesives, and primers but there aren’t a lot of options. One additional consideration is that materials (medical silicone, plastics, etc) from different vendors have different formulations and may result in significant differences in bond strength of the liquid silicone.


Modern Machine Shop: Tempering Urgency Within Your Shop

Modern Machine Shop Online

By: Derek Korn

Like many businesses, machine shops operate under an atmosphere of urgency. Part programs need to be created quickly so jobs can be released in a timely manner to the shop floor. First-article inspection must to be carried out promptly so necessary adjustments can be made and the production run can proceed. Once a job is completed, machine setups need to be torn down in short order so a new setup can begin for the next job.

These types of things happen at a New-England-area company I recently visited and will profile in next month’s issue. The company, Albright Technologies, has to move at a decent clip. A fast pace is necessary because its niche is rapidly creating prototype molds and small batches of tiny silicon parts for medical customers pressured to speed their new products to market.

Click here to read the rest of the article.

Learn more about implantable silicone

Question: I’d like to know more about implantable medical silicone.

Answer: Implantable medical silicone has the capability of being implanted in a living body without the risk of rejection. Commonly, the implantable medical silicone is categorized into two types: short term (restricted) and long term (unrestricted) implantable silicone.

The short term implantable medical silicone is used for a temporary medical application – normally ranging from 1 to 29 days. For example, a suture sleeve is made of short term implantable silicone to hold parts of a medical device to keep them in place during a suture. Once the suture is done, the suture sleeve is removed from the patient’s body. The long term implantable silicone should be able to remain inside the patient’s body for 30 days or more. A good example of long term implant application is the Left Ventricular Assist Device; this device helps the patient maintain the pumping ability of a heart that can’t sufficiently pump blood throughout the body on its own. This device isn’t removed until the patient has a donor.

Each medical silicone implant application requires certain implantable silicone. A medical device containing implantable medical silicone or other biomaterials must be carefully evaluated according to ISO 10993 before it is implanted into a patient’s body; the ISO 10993 contains a series of standards for evaluating the biocompatibility of the device. Also, it sometimes is tested according to ASTM (American Society for Testing and Materials) depending on individual application.

There are commercially implantable medical silicone materials available in high consistency silicone rubber (HCR) and liquid silicone rubber (LSR). Color additives can be added to meet the requirement of a medical application, but it is recommended that the color additives should have the same class and manufacture as the implantable silicone to prevent defects. The implantable medical silicone can also be mixed with additives such as tungsten and barium that allows the implants to be viewed easily with medical imaging equipment.

Therefore, selecting an implantable medical silicone for a medical device should be thoroughly evaluated prior to implantation. If you have any other questions, please email Phayhean Soo directly at

If quoted a tolerance of +/- x, what is the piece-to-piece tolerance?

Questions: If quoted a tolerance of +/- x, what is the piece-to-piece tolerance?  i.e.  does tolerance change within a batch?  I assume that since the mold is the same, piece to piece variation should be negligible, but maybe there is something to do with the silicone handling/curing that may affect different pieces from the same batch?

Answer: Assuming the processing parameters are maintained throughout the batch, the medical silicone parts should all have consistent dimensions.  However, if temperature and pressure are permitted to fluctuate (significantly) during the curing cycle, the parts will exhibit different overall dimensions.  These deviations will be slight and typically difficult to measure (especially in micro parts).

The main factor in this is shrink, Liquid Silicone Rubber typically shrinks 1-3%, depending upon the material and the processing parameters (particularly operating temperature).  If shrink of the medical silicone isn’t properly accounted for, and processing parameters are not properly controlled, you could theoretically see a swing as drastic as an eighth inch over a twelve inch diameter gasket.

To ensure that you are creating liquid silicone parts repeatably, fine tune your processing parameters, and keep them tight, try not to fluctuate on temperature by more than a few degrees Fahrenheit, and try to keep your pressure within a few hundred PSI.  Postbaking medical silicone parts is also crucial in assuring that part dimensions repeat.  Most silicone distributors will recommend a postbaking cycle for completed silicone parts, this cycle helps to ensure that the molecular matrix of the medical silicone is fully cross-linked.  While it will vary based on material, it is typically a 2 – 4 hour period of cooking at around 350°F – 450°F.

If you have any other questions, please email Kevin Franzino directly at